Denoising of multicomponent images using wavelet least-squares estimators
نویسندگان
چکیده
In this paper, we study denoising of multicomponent images. The presented procedures are spatial wavelet-based denoising techniques, based on Bayesian leastsquares optimization procedures, using prior models for the wavelet coefficients that account for the correlations between the spectral bands. We analyze three mixture priors: Gaussian scale mixture models, Bernoulli-Gaussian mixture models and Laplacian mixture models. These three prior models are studied within the same framework of least-squares optimization. The presented procedures are compared to Gaussian prior model and single-band denoising procedures. We analyze the suppression of non-correlated as well as correlated white Gaussian noise on multispectral and hyperspectral remote sensing data and Rician distributed noise on multiple images of within-modality magnetic resonance data. It is shown that a superior denoising performance is obtained when a) the interband covariances are fully accounted for and b) prior models are used that better approximate the marginal distributions of the wavelet coefficients.
منابع مشابه
Can Wavelet Denoising Improve Motor Unit Potential Template Estimation?
Background: Electromyographic (EMG) signals obtained from a contracted muscle contain valuable information on its activity and health status. Much of this information lies in motor unit potentials (MUPs) of its motor units (MUs), collected during the muscle contraction. Hence, accurate estimation of a MUP template for each MU is crucial. Objective: To investigate the possibility of improv...
متن کاملImage Denoising using Uniform Curvelet Transform and Complex Gaussian Scale Mixture
In this project, a modified version of the curvelet transform is proposed for image denoising. We introduced the complex Gaussian scale mixture (CGSM) for modeling the distribution of complex curvelet coefficients. The statistical model is then used to obtain the denoised coefficients from the noisy image decomposition by Bayes least squares estimator. Performance of the denoised images using t...
متن کاملWavelet-based Multicomponent Image Restoration
In this paper we study the restoration of multicomponent images, and more particularly, the effects of taking into account the dependencies between the image components. The used method is an expectation-maximization algorithm, which applies iteratively a deconvolution and a denoising step. It exploits the Fourier transform’s economical noise representation for deconvolution, and the wavelet tr...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملAn Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Image Vision Comput.
دوره 26 شماره
صفحات -
تاریخ انتشار 2008